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Al::stract 
We investigate sound pressure response of classical guitars in the 

region of frequencies up to 6-800 Hz. In this range, the response spec­
trum is characterized by resonance peaks corresponding to vibrational 
modes of the top plate. We model guitar response as a superposition of 
contributions from single resonances. Each resonance is modelled as a 
harmonic oscillator, moving a piston and acting as a simple monopole 
radiator. We find that this simple model adequately describes guitar 
responses up to 6-800Hz. Theoretical fits to response curves make it 
possible to determine for each resonance (oscillator) the ratio A/m 
(piston area to oscillator mass). The net sound radiated from the oscil­
lator is proportional to this ratio. Data for five good classical gui­
tars are presented. The implication of this work is, that guitar re­
sponses up to 6-800 Hz can be characterized by three parameters for four 
to six resonances instead of by raw data points. 

Introduction 

The sound radiated from the guitar is mainly generated by the vibrat­

ing top plate. One way to characterize a guitar is by measuring the 
sound pressure response for a sinusoidal constant-force excitation, usu­

ally applied to the bridge. The sound pressure response shows well­
defined resonance peaks at frequencies from approx. 100 Hz up to al::out 6-
800 Hz, depending on the individual instrument. Hologram-interferometric 

studies of the top plate have shown (Jansson, 1971) that the resonances 
correspond to characteristic modes of vibration of the top plate. For 

the lower resonances, the top plate vibrates in modes with few nodal 
lines as shown in Fig. 1. At higher frequencies, the sound pressure 
response from many overlapping resonances forms a 'resonance continuum' 

(Caldersmith, 1981) with a multitude of peaks and antiresonances. At 
these frequencies, the top plate vibrates in increasingly smaller sub­

divisions. 

151 



Fig. 1 . The vibrational configurations of the four lowest 
top plate modes found in most classical guitars. 
Typical resonance frequencies are 200, 300, 400, 
and 500-550 Hz. Contours of the same vibrational 
amplitude are indicated. The relative direction 
of vibration (up/down) is indicated with plus and 
minus. The second resonance in the figure is a 
pure dipole. The third and fourth resonances con­
tain both monopole and multipole radiation. 

The purpose of this paper is to give an understanding of guitar sound 
pressure response in the region of frequencies up to 6-800 Hz where the 
response is characterized by resonance peaks. 

\\Je shall assume here, that each vibratory mode can be represented as a 
simple harmonic oscillator. The lowest top-plate mode is a pure monopole 
source of radiation. Modes with more nodal lines in general produce roth 
multipole and net monopole radiation. Since multipole radiation is 
inefficient at lower frequencies, we only consider the monopole part of 
the radiation from each oscillator. 
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The first 
Helmholtz resonance of 

1980) of this In this 
we focus on the response over a broader frequency range and 

the more 
the lowest resonance at around 100 
at around 200 Hz treated as 

resonance. 

of the two lowest resonances. Thus, 
Hz omitted and the second resonance 

due to the f t top-

We a simplified model of guitar response at frequencies up to 
6-800 Hz. The theoretical concepts employed are the harmonic oscillator 
combined with the sound pressure response from a simple monopole source 
of acous radiation. We explore to which extent the frequency re­
sponse from a classic guitar can be described by a superposition of 
responses from harmonic oscillators, each of which acts as a simple 
source of monopole radiation. Each oscillator is characterized 1:Jy 

resonance frequency and Q-factor together with the ratio of its effective 
area to effective mass as seen from the driving point. 

The harmonic oscillator 

The basic element 

radiation. 
enclosed a 

ibrium position. The 
constant acted upon 1:Jy a force F o..._._....,.._ '-' ...... 

.. 
mx = 

where R the to motion. For a 

harmonic 
to acoustic mono-

to Newtons second law: 

153 



the motion is also sinusoidal and the above equation can be solved for 

the oscillator velocity u 

u= F iW 

m (W 2 -w 2) +iYw 
0 

( 1 ) 

Here, the resonance frequency f 0 is given by w
0

=2Ttf
0

, w
0 

2=k/m andY 
equals R/m. In terms of the Q-factor Y =2rrfofQ. 

The moving piston acts as a source of monopole radiation. At a dis­

tance r from the source, the magnitude of sound pressure is given by 

iWp 
P = - 4n: r uA (2) 

where p is the density of air (1.205 kg/m3). The variation of phase with 

distance from the source is not important for the present purpose. Using 
the piston velocity from Eq. (1) we obtain for the sound pressure: 

(3) 

At a given distance, the sound pressure is proportional to the ratio of 
piston area to mass A/m. The last factor accounts for the frequency 
variation. The pressure is positive for f«f

0 
and negative for f»f

0
• 

For low frequencies, the magnitude of the sound pressure is proportional 
to f2 whereas at high frequencies, the response becomes constant, propor­
tional to A/m. 

The real guitar 

The guitar is a vibratory system characterized by many resonances. 
The lowest resonances typical for most classic guitars are shown in Fig. 
1. In the measurements presented here, the guitar was excited by a 
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constant force transducer at the center of the bridge. Each of the 
resonances may be characterized by an effective piston area and an effec­

tive mass. For the more complicated vibrational configurations as, for 
instance, modes no. 3 and 4 in Fig. 1, some parts of the top plate move 
180 degrees out of phase with the point of excitation. In such cases, 
the effective monopole piston area is defined as the area which, when 
moving with the velocity of the point of excitation, produces the actual 
net volume displacement of the source. Mathematically speaking, this 
relation may be formulated as: 

Ai llexc = J ui (x,y) da 

guitar face 

(4) 

where ui (x,y) is the velocity of the point (x,y) of the guitar top plate 

for the i'th resonance and where uexc is the velocity at the point of 
excitation. 

It follows that the effective piston area can be negative, i.e., that 
the net volume displacement takes place at a phase opposite to that of 
the point of excitation. Indeed we shall show tl1at the great variability 
in guitar response curves for different guitars is due to various combi­
nations of positive and negative piston areas. 

The effective mass of a particular mode depends upon the position of 
the exciter. If the exciter is placed close to a nodal line, the effec­
tive mass of that mode becomes large. The ratio A/m may therefore change 
drastically when the point of excitation is changed. 

The sound pressure from the i'th resonance is a function of Ai/mi, 
f 0 i, and Qi, i.e., p = p(f,Ai/mi,foi' Qi). Therefore the total sound 
pressure from the guitar - not counting multipole radiation - is given as 

Ptot(f) = L p(f, Aj_/mi, foi• Qi) 

i 
(5) 

Since the contribution from one oscillator grows as f 2 and reaches a 
constant level above resonance, it follows that at any frequency f, the 
sound pressure is mainly determined by oscillators for which f0i~f. In 
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fitting a series of oscillators to describe a measured sound pressure 
response, one can start by the oscillator, then the second 
oscillator etc. because the contribution from oscillators at higher 
frequencies is marginal due to the f2-dependence of response below reso­
nance. 

Theoretical 

In the following we give some theoretical examples on sound 
pressure response curves from the superpos of two and 
three oscillators. The resonance, at t.he lowest re-
presents the top plate mode of the guitar which corresponds to the 
second resonance of the The ratio of the 
area to mass has been chosen to be largest for this resonance, in accord­
ance with the experimental findings presented later. 

The two-oscillator case 

The contribution to sound pressure from a resonance is below 
resonance and above resonance. Thus, for two resonances with 
the same sign of the ton area, the contributions of the 
tend to cancel each other between resonances, to an 
between the two resonances, as shown in Fig. 2. The antiresonance occurs 
close to the cross-over frequency of the response curves. 
Above the highest resonance the two modes vibrate in there-

each other. 

have the of the 
resonances of both 

same here. resonance, the 
from the two tend to make them and an 

occurs close to the cross-over 
the two of 
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medium-heavy line (antiresonance between 
resonances) shows the when 
ton areas are positive. line 
resonance second resonance) shows the 
response when the second piston area is nega-
tive. The sound pressure at a 
distanceof 1 m with an force of 1 N. 

the 
there 

area and 

no 
of the first one is 

after the second resonance. Such a case 
seen if one to fit the two first resonances of a i.e. the 
~~u~~~~ Helmholtz and first resonances. 

case 

the sound 
There are four 
areas. The 

s toad from the 
first resonance at 200 Hz 
second resonance at 400 Hz 
resonance which occurs before 
after the the 

3 can all be under-
case. area of the 

The structure around the 

and 
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Fig. 3. S01.md pressure resi_X)nse from three super:f_X)sed 
oscillators. The oscillators have resonance 
frequencies at 200, 400, and 600 Hz. The Q­
factors of all oscillators are 30 and the Aim­
ratios of the oscillators are 6, 1 and 1 cm2 /g. 
The four response curves represent situations 
with different combinations of the signs of the 
three piston areas, as indicated above each 
resonance peak. The sound pressure is calculated 
at a distance of 1 m with an exciting force of 1 N. 

two first resonances act roughly as one piston, since the response of an 
oscillator approaches a constant level at frequencies well above reso­
nance. The structure around the third resonance is, thus, again ex­
plained by the position of the antiresonance. 

The situation represented by the top curve in Fig. 3 has - to the 
author's knowledge- never been seen in a guitar. The situation in the 
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second curve from the top is found in guitars with a pronounced second 
resonance, cf. Fig. l. The three peaks in the curve represent then the 
first, second, and third top plate modes. The third curve from the top 
represents a rather undesirable situation in which two antiresonances 
fall in-between two neighbouring resonances and create a region of poor 
acoustical response. 'Ihe rottom curve shows a situation found in guitars 
with a second top-plate resonance which not is excited when the exciter 
is positioned at the center nodal line of this mode, see Fig. 1. The 
resonances in this curve correspond to the first, third, and fourth top 
plate modes in most classic guitars. 

Thus, many qualitative features of guitar response curves may be 
understood from this simple model of superimposed harmonic oscillators. 
The variability of response curves is brought al:X>ut by the combinations 
of different signs of piston area of the individual resonances. 

Experimental details 

Measurements 

The sound pressure response curves for the five guitars studied here 
were measured as described earlier {Christensen and Vistisen, 1980) in an 

anechoic chamber. 
guitar top plate. 

The sound pressure level was measured 2 m al:X>ve the 
The exciting force of approximately 0.2 N was applied 

to the center of the bridge. Response curves for the five guitars are 
shown in Fig. 4. In order to facilitate comparisons with theoretical 
calculations, the sound pressure response curves were scaled to represent 
values at 1 m distance from the guitar for an exciting force of lN. 

The instruments 

The guitars used in this study were all handcrafted instruments with 
spruce top plates. All guitars have rosewood back and sides with the 
exception of no. 3, which has cypress back and sides. Further details of 
the instruments are listed below. 
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Ramirez: The 
below the soundhole 
s no. 4.952, 1971. 

transverse bar 
down on the 

Ibanez: This 

bracing as described 

a Japanese version of a Ramirez 

3) Taurus: Traditional Torres 

4) Contreras: Flamenco 
ca. 1977. 

with 

serial no. 56, 1967. 

Torres 

thin plate about the 
no. 224, , 1978. 

Results and discussion 

curves from harmonic oscillators were 
response curves as shown Fig. 

were the 

the resonances and. the 
the best fit of the 
as judged from a of these curves. 

The calculated response curves 
measured responses. The data used 
L 

In , there a 
curves and measured 
died. 
and even 
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Fig. 4. Comparison between measured sound pressure responses 
and calculated ones for five guitars. Thin lines are 
calculated responses and heavy lines are experimental 
ones. All curves are scaled to apply for an exciting 
force of 1 N at a distance of 1 m from the guitar top 
plate. The oscillator parameters used in the calcula­
tion are shO'wn in Table 1 . 
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Table 1 . Oscillator parameters used in calculating 
the theoretical response curves in Fig. 4. 

Guitar 

1 :Ramirez 

2:Ibanez 

3:Taurus 

4:Contreras 

5:Romanillos 

-

fo 
(Hz) 

200 
257 
410 
506 
627 

208 
282 
405 
572 
770 

220 
285 
415 
498 
559 
650 

216 
310 
395 
495 

187 
522 
610 

Q 

25 
25 
30 
40 
30 

25 
35 
20 
50 
40 

25 
15 
40 
70 
60 
20 

12 
15 
25 
40 

15 
30 
50 

A/m 

(cm2 /g) 

10. 
4. 

-1.2 
-1.0 
-1.0 

7. 
1.5 

-1.5 
-1.0 
-2.0 

7.5 
-0.8 
-0.6 
-0.25 
-0.4 
-0.8 

9.0 
-1. 
-1.5 
-1.0 

14.0 
-3.0 
-0.5 

top-plate 

mode 

1 
2 
3 
4 
? 

1 
2 
3 
4 
? 

1 
2 
3 
4 
? 
? 

1 
2 
3 
4 

1 
4 
? 



below 150 Hz because the structure of the two first resonances - at 
approximately 100 and 200 Hz - has already been explained quantitatively 
as a result of a coupling between the Helmholtz and first top plate 
resonances (Christensen and Vistisen, 1980). Only the highest of these 
resonances is taken into account because the aim of this work is to test 
if response curves may be fitted to the superposed oscillator model 
rather than to give a detailed account of the nature of each resonance. 

Above 600-800 Hz it was not possible to fit the sound pressure re­
sponse by superposed oscillators. At these 'high' frequencies there is 
no structure characteristic of resonances. It is known from hologram­
interferometric studies (Jansson, 1971; Firth, 1977) that resonances at 
high frequencies still may be characterized by simple geometric patterns, 
as the ones in Fig. 1, but with an increasing number of nodal lines on 
the guitar top plate. The net monopole radiation from such resonances 
decreases while at the same time multipole radiation becomes more effi­
cient. Caldersmith (1981) has characterized this region of guitar re­
sponse as a 'resonance continuum' with a strong directional dependence of 
the radiated sound. 

In contrast, the region of frequencies studied here {up to 6-800Hz) 
is characterized by strong sources of net monopole radiation - air 'pump­
ing' modes - with little directional dependence. 

Table 1 gives a list of the parameters used in the fitting to the 
measured response curves. Each resonance is given a tentative assignment 
to a corresponding top plate mode. Such an assignment is based on the 
author's investigation of the mode structure at resonance of many gui­
tars. No such specific assignment was undertaken of these instruments. 
For the low-order top plate modes assigned here, there is little doubt of 
the correctness of the assignment which follows the one observed in a 
number of hologram-interferometric studies (Jansson, 1971; Firth, 1977; 
Schwab, 1975). 

Oomments to Table 1 

The first top-plate mode at around 200 Hz has piston area to mass 
ratios ranging from 7 to 14 cm2/g. These values are slightly higher than 

the ones found from an analysis of the two lowest resonances (Christensen 
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and Vistisen, 1980) because we have not accounted for the Helmholtz 
resonance. The A/m-ratio for the first top-plate mode is almost one 
order of m~gnitude larger than for the higher resonances. The contribu­
tion to sound pressure from one oscillator approaches a constant at high 
frequencies. Therefore, the magnitude of the A/m-ratio for the first 
top-plate mode is important for the behaviour at high frequencies too. 

If (A/m) 1 is reduced by a factor of two, the sound pressure level is 
reduced by arout 3 dB between the higher resonances. The sound pressure 
level between the resonances is rather important. The partials of a tone 
which fall in-between the resonances have a longer sustain, because the 

energy of the vibrating string is drained very fast in the vicinity of 
the resonances. 

The second top-plate mode at 260-310 Hz usually a pure dipole 
guitars with a symmetrical bracing (see Fig. 1) but can be turned 
a strong monopole source the bracing is nonsymmetrical. 
and 4 haVE:! symmetrical bracing accordingly, we find that the 
top-plate mode characterized by a rather small negative 
a poor Q-factor, probably because this mode very close 
center nodal line. As seen from 4, this mode rather ins 

no. 3 
second 

and 
to the 

cant and no. 3 and 4 it has only been accounted for because 
it gives a small 'cosmetic' improvement of the fit to the measured re­
sponse. On the contrary, guitars no. 1 and 2 with nonsymmetrical 
show a strong monopole contribution from the second top-p.Lat.e 
relatively large positive A/m-ratio and a fairly high Q-factor. 

The third mode occurs close to 400 Hz and cou-
pled to tl1e half-wave longitudinal resonance the 
instruments studied, this resonance had a negative A/m-ratio. 
also the case for all of the resonances. A reason 
for this is, that for the modes, most of the takes 
place at the outer lobes of the top plate because the center made 

by the presence of the bridge. 

The fourth top-plate resonance can be in stu-
died. It occurs at 500 to 570 Hz. For all but one it was 
possible to identify at least one additional resonance at higher frequen­
cies before the sound pressure response approaches a resonance continuum 
with no characterstic resonance peaks. 
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In conclus we find that the first four top-plate resonances ac-
count for the sound pressure response up to about 600 Hz. In addition, 
there might be higher air-pumping resonances up to about 800 Hz. At 
still higher frequencies - in the 'resonance continuum' - it is not 
possible to fit guitar sound pressures by' the present model. 

Conclusion 

The purpose of this paper was to explain the sound pressure response 
curves for the classical guitar. This aim has been reached to the extent 
that we now have a qualitative understanding of response curves. The 
simple principles outlined in the sections on 'the two-oscillator case' 
and 'the three-oscillator case' show that the behavior between resonances 
can be from an understanding of the harmonic oscillator 
The very different behavior obtained between the resonances 
and 3) is due to the of the s and the 
tudes areas 
related to the 

modes and are, 
modes. 

we have shown that response curves may be ac­
counted for up to 6-800 Hz responses from 

nances. 

we have 

to a resonance 
obtained between measured 

in the response curve. 
curves and model 

that the response up to 6-800 Hz by 
the 

that most of the 
cal energy in of classical 

200 to 800 It 
the radiated acous-

tical energy, 
progress 

dominated by radiation from monopole sources. Further 
may, thus, be achieved 

methods to tune the to provide good responses at the first four 

top modes. 

Understanding sound pressure response curves have some implications: 
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It is much easier to characterize a guitar by the parameters some 
four to six harmonic oscillators than by the frequency response 
curves. This is particularly useful in comparing different instru­
ments because the subjective impression of quality may be correlated 
to oscillator parameters. One can in this way gain an understanding 
of the physical characteristics that are desirable from a subjective 
impression of instrument quality. 

It is interesting to note that in principle the mode frequencies and 
vibration amplitudes of a given top plate may be computed theoretically 
(Schwab, 1976). Except for Q-factors, such a computation could give 

information al:out the A/m-ratios and resonance frequencies for a given 

top-plate design. The present model could then be used to calculate the 
sound pressure response curve. This would be particularly fruitful if 

one at the same time had a subjective quality evaluation based on oscil­

lator parameters. 
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